Linear isometries between certain subspaces of continuous vector-valued functions
نویسندگان
چکیده
منابع مشابه
Linear Isometries between Subspaces of Continuous Functions
We say that a linear subspace A of C0(X) is strongly separating if given any pair of distinct points x1, x2 of the locally compact space X, then there exists f ∈ A such that |f(x1)| 6= |f(x2)|. In this paper we prove that a linear isometry T of A onto such a subspace B of C0(Y ) induces a homeomorphism h between two certain singular subspaces of the Shilov boundaries of B and A, sending the Cho...
متن کاملIsometries on Spaces of Vector Valued Lipschitz Functions
This paper gives a characterization of a class of surjective isometries on spaces of Lipschitz functions with values in a finite dimensional complex Hilbert space.
متن کاملIsomorphisms between Spaces of Vector-valued Continuous Functions
A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable compact metric spaces Qt and Q2> t n e spaces of continuous real-valued functions C ^ ) and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic. The purpose of this paper is to show that this conclusion is ...
متن کاملStability of persistence spaces of vector-valued continuous functions
Multidimensional persistence modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti ...
متن کاملPointfree topology version of image of real-valued continuous functions
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1998
ISSN: 0019-2082
DOI: 10.1215/ijm/1255985562